Rank of a Matrix | Part 1 | Minor Method & Introduction | B.Sc & B.Tech Maths Sem I | MWSB

Rank of a Matrix | Part 1 | Minor Method & Introduction | B.Sc & B.Tech Maths Sem I | MWSB

πŸ“˜ MATHS WITH SANDEEP BHATT (MWSB) Powered by Om Science Classes, Ranchi (Jharkhand) πŸŽ“ Course: B.Sc. Mathematics (Honours) – Semester I πŸ›οΈ University: Ranchi University (As per NEP–FYUGP Curriculum 2025–26 onwards) πŸ“– Chapter: Rank of a Matrix πŸ“ Topic (Part 1): Introduction & Minor Method πŸ‘¨β€πŸ« Educator: Sandeep Bhatt Sir (Mathematics Educator | Founder – Om Science Classes) ────────────────────────────────────────── πŸ“– ABOUT THIS LECTURE (PART 1) In this lecture, we begin the topic Rank of a Matrix, one of the most fundamental concepts in Linear Algebra. You will understand: β€’ What minors are β€’ How to find minors of 1Γ—1, 2Γ—2, and 3Γ—3 β€’ How rank is defined using non-zero minors β€’ Why rank is essential for solving linear systems β€’ The complete Minor Method for 3Γ—3 matrices This is the most important conceptual class, forming the base for later videos on echelon forms and row operations. ────────────────────────────────────────── 🧠 TOPICS COVERED IN PART 1 1️⃣ Meaning of Minors (Order 1, 2, 3) 2️⃣ Definition of Rank using Minors 3️⃣ Rank = Largest order of a non-zero minor 4️⃣ Important observations about rank 5️⃣ Strategy to find rank of 3Γ—3 matrices 6️⃣ Examples based on the Minor Method β€’ Example 1 – Rank = 3 β€’ Example 2 – Rank = 2 β€’ Example 3 – Rank of a 3Γ—4 matrix ────────────────────────────────────────── πŸ“Œ KEY POINTS YOU WILL LEARN β€’ How to compute rank quickly using minors β€’ How to identify non-zero determinants β€’ How minors control the dimension of row/column space β€’ When a matrix is singular vs non-singular β€’ Why minor method is best for small matrices ────────────────────────────────────────── 🧩 SOLVED EXAMPLES IN THIS LECTURE βœ” Example (i): Rank of [1 2 2; 2 3 4; 0 2 2] β†’ rank = 3 βœ” Example (ii): Rank of [2 3 4; 3 1 2; –1 2 2] β†’ rank = 2 βœ” Example (iii): Rank of [1 1 –1 1; 1 –1 2 –1; 3 1 0 1] β†’ rank = 2 ────────────────────────────────────────── 🎯 LEARNING OUTCOMES After this lecture, students will be able to: βœ” Compute rank using non-zero minors βœ” Understand minor structures clearly βœ” Decide singular/non-singular nature of a matrix βœ” Approach higher-order matrices confidently ────────────────────────────────────────── πŸ› COURSE DETAILS β€’ Semester: I β€’ Subject: Linear Algebra (Matrix Theory) β€’ Mode: Online + Offline (Hybrid Learning) β€’ Platform: Maths With Sandeep Bhatt (MWSB) β€’ Location: Ranchi, Jharkhand ────────────────────────────────────────── πŸ‘¨β€πŸ« INSTRUCTOR DETAILS Sandeep Bhatt Sir Mathematics Educator | Founder – Om Science Classes πŸ“ Ranchi, Jharkhand πŸ“ž Contact: 7903262149 ────────────────────────────────────────── πŸ”— FOLLOW & CONNECT πŸ“Ί YouTube: Maths With Sandeep Bhatt (MWSB) πŸ“˜ Instagram: @omscienceclasses πŸ“— Facebook: Om Science Classes Ranchi ────────────────────────────────────────── πŸ™ THANK YOU FOR WATCHING! If you found this lecture helpful, please LIKE, SHARE & SUBSCRIBE to the channel Maths With Sandeep Bhatt (MWSB) for high-quality Mathematics lectures. ────────────────────────────────────────── πŸ“Š SEO KEYWORDS rank of a matrix, minor method rank, matrix rank explained, bsc maths semester 1, ranchi university maths, linear algebra rank, minor of a matrix, rank definition, matrix theory nep fyugp, sandeep bhatt sir maths, om science classes, maths with sandeep bhatt ────────────────────────────────────────── #MathsWithSandeepBhatt #MWSB #OmScienceClasses #RankOfMatrix #MinorMethod #LinearAlgebra #BScMathematics #RanchiUniversity #NEP2025 #Semester1 #MatrixTheory