Prove that 2 〖sin〗^(-1)⁡〖3/5〗=〖tan〗^(-1)⁡〖24/7〗

Prove that 2 〖sin〗^(-1)⁡〖3/5〗=〖tan〗^(-1)⁡〖24/7〗

Class XII - Inverse Trigonometric Functions Q3: Prove that 2 〖sin〗^(-1)⁡〖3/5〗=〖tan〗^(-1)⁡〖24/7〗 Previous Videos related to this chapter: Q: Evaluate tan⁡(2 tan^(-1)⁡〖1/5〗-π/4):    • Evaluate tan⁡(2 tan^(−1)⁡〖1/5〗  − 𝜋/4)   Q117: IF 〖tan〗^(-1)⁡ x-〖cot〗^(-1)⁡x=〖tan〗^(-1)⁡〖1/√3〗, Find x    • IF tan inverse x - cot inverse x = tan inv...   Q124: If (〖tan〗^(-1)⁡x )^2+(〖cot〗^(-1)⁡x )^2=(5π^2)/8, then find x    • If (〖tan〗^(-1)⁡x )^2+(〖cot〗^(-1)⁡x )^2=(5π...   Q125, 126: Evaluate: sin⁡(〖tan〗^(-1)⁡x+〖tan〗^(-1)⁡〖1/x〗 )    • Evaluate: sin⁡(〖tan〗^(-1)⁡x+〖tan〗^(-1)⁡〖1/...   Q135: Find the greatest and least values of (〖sin〗^(-1)⁡x )^2+(〖cos〗^(-1)⁡x )^2:    • Find the greatest and least values of (〖si...   Q: Evaluate cos⁡(2 tan^(-1)⁡2 )+sin⁡(2 tan^(-1)⁡3 ):    • Evaluate  cos⁡(2 tan^(−1)⁡2 )+sin⁡(2 tan^(...   COMPLETE NCERT EXERCISE 2.1 | ONE SHOT VIDEO:    • COMPLETE NCERT EXERCISE 2.1 | ONE SHOT VIDEO   Q1: Prove that 3 〖sin〗^(-1)⁡x=〖sin〗^(-1)⁡(3x-4x^3 ):    • Prove that 𝟑 〖𝐬𝐢𝐧〗^(−𝟏)⁡𝒙=〖𝐬𝐢𝐧〗^(−𝟏)⁡(𝟑𝒙−𝟒...   Q2: Prove 3 〖cos〗^(-1)⁡x=〖cos〗^(-1)⁡(4x^3-3x);x∈[1/2,1]:    • Prove 3 〖cos〗^(-1)⁡x=〖cos〗^(-1)⁡(4x^3-3x);...   Q3: Write in simplest form:    • Write in simplest form:〖tan〗^(-1)⁡〖(√(1+x^...   〖tan〗^(-1)⁡〖(√(1+x^2 )-1)/x〗 Q4: Write in simplest form:    • Write in simplest form:〖𝐭𝐚𝐧〗^(−𝟏)⁡√((𝟏−𝐜𝐨𝐬...   〖tan〗^(-1)⁡√((1-cos⁡x)/(1+cos⁡x )), 0 x π Q5: Write in simplest form:    • Write in simplest form:〖tan〗^(-1)⁡((cos⁡x-...   〖tan〗^(-1)⁡((cos⁡x-sin⁡x)/(cos⁡x+sin⁡x )), -π/4 x 3π/4 Q6: Write in simplest form:    • Write in simplest form:〖tan〗^(-1)⁡〖x/√(a^2...   〖tan〗^(-1)⁡〖x/√(a^2-x^2 )〗, |x| a Q7: Write in simplest form:    • Write in simplest form:〖𝐭𝐚𝐧〗^(−𝟏)⁡〖(𝟑𝒂^𝟐 𝒙...   〖tan〗^(-1)⁡〖(3a^2 x-x^3)/(a^3-3ax^2 )〗, a 0;- Q8: Find the value of:    • Find the value of:〖𝐭𝐚𝐧〗^(−𝟏)⁡[𝟐 𝐜𝐨𝐬⁡(𝟐 〖𝐬𝐢...   〖tan〗^(-1)⁡[2 cos⁡(2 〖sin〗^(-1)⁡〖1/2〗 ) ] Q9: Find the value of:    • Find the value of:tan⁡〖1/2 [〖sin〗^(-1)⁡〖2x...   tan⁡〖1/2 [〖sin〗^(-1)⁡〖2x/(1+x^2 )〗+〖cos〗^(-1)⁡〖(1-y^2)/(1+y^2 )〗 ]〗, |x| 1, y 0 & xy 1 Q10: Find the value of:    • Find the value of:〖sin〗^(-1)⁡[sin⁡〖2π/3〗 ]   〖sin〗^(-1)⁡[sin⁡〖2π/3〗 ] Q11: Find the value of:    • Find the value of:〖𝐭𝐚𝐧〗^(−𝟏)⁡[𝐭𝐚𝐧⁡〖𝟑𝝅/𝟒〗 ]   〖tan〗^(-1)⁡[tan⁡〖3π/4〗 ] Q12: Find the value of:    • Find the value of:tan⁡(〖sin〗^(-1)⁡〖3/5〗+〖c...   tan⁡(〖sin〗^(-1)⁡〖3/5〗+〖cot〗^(-1)⁡〖3/2〗 ) Q13: Find the value of:    • Find the value of:〖𝐜𝐨𝐬〗^(−𝟏)⁡[𝐜𝐨𝐬⁡〖𝟕𝝅/𝟔〗 ]   〖cos〗^(-1)⁡[cos⁡〖7π/6〗 ] Q14: Find the value of:    • Find the value of: sin⁡(π/3-〖sin〗^(-1)⁡[-1...   sin⁡(π/3-〖sin〗^(-1)⁡[-1/2] ) Q15: Find the value of:    • Find the value of:〖tan〗^(-1)⁡√3-〖cot〗^(-1)...   〖tan〗^(-1)⁡√3-〖cot〗^(-1)⁡(-√3) Q1: Find the value of: 〖cos〗^(-1)⁡(cos⁡〖13π/6〗 ):    • Find the value of: 〖cos〗^(-1)⁡(cos⁡〖13π/6〗 )   Q2: Find the value of: 〖tan〗^(-1)⁡(tan⁡〖6π/6〗 ):    • Find the value of: 〖tan〗^(-1)⁡(tan⁡〖6π/6〗 )   #cbse #icse #boards #8th #9th #10th #foundation #competition #iit #jee #Advanced #mains #ntse #olympiads #exams #examination #achiever #topper #zenith #zenithinstituteofmathematics #indersir #ludhiana #modelgram #bestmathscoaching #besttutorials #besttuition #bestinludhiana #mathtricks #viii #ix #x #xi #xii #important #excellent #question #exponents #powers #bases #lawsofexponents #numbersystem #rationalization #ITF #Inverse #inversetrigonometricfunctions