🔹 "Class 9 Number System | Laws of Exponents & Rationalisation | Extra Questions with Solutions | Infinix Classes Maths by Faiz Sir" 🔹 "कक्षा 9 गणित | संख्या पद्धति अध्याय 1 | घातांक के नियम और परिमेयकरण | अतिरिक्त प्रश्न व हल" 📘 About this Video: Welcome to Infinix Classes – Maths by Faiz Sir! In this video, we cover Class 9 Number System (Chapter 1) with extra questions beyond NCERT, including important concepts like laws of exponents, rationalisation, and recurring decimals to fractions. These questions are highly useful for CBSE Board Exams, NTSE, Olympiads, and Competitive Exams. 👉 Questions Covered in this Video: 1️⃣ Express recurring decimals into vulgar fractions: (a) 0.6̅ (b) 0.(16)̅ (c) 0.(234)̅ (d) 0.12(54)̅ 2️⃣ Solve for a and b: (√3 − 1)/(√3 + 1) = a + b√3 3️⃣ Solve for a and b: (3 + √2)/(3 − √2) = a + b√2 4️⃣ Solve for a and b: (5 + 2√3)/(7 + 4√3) = a + b√3 5️⃣ Solve for a and b: (√7 − 1)/(√7 + 1) − (√7 + 1)/(√7 − 1) = a + b√7 6️⃣ Rationalise the denominator: 30/(5√3 − 3√5) 7️⃣ Rationalise the denominator: (6 − 4√2)/(6 + 4√2) 8️⃣ Rationalise the denominator: 3/(5 − √3) + 2/(5 + √3) 9️⃣ Rationalise the denominator: 1/(√3 + √2 − √5) 🎯 By the end of this video, you will have a clear understanding of solving tricky rationalisation & exponents problems for Class 9 Maths. इस वीडियो में हम कक्षा 9 गणित अध्याय 1 – संख्या पद्धति के अतिरिक्त प्रश्नों को हल करेंगे। यह वीडियो खासतौर पर NCERT के बाहर के प्रश्नों, घातांक के नियम, परिमेयकरण (Rationalisation), और आवर्ती दशमलव को भिन्न में बदलने पर आधारित है। यह सभी प्रश्न CBSE बोर्ड, प्रतियोगी परीक्षाओं (NTSE, Olympiad), और स्कूल परीक्षाओं के लिए बेहद उपयोगी हैं। 📌 वीडियो में शामिल प्रश्न: ✔️ आवर्ती दशमलव को भिन्न में बदलना ✔️ घातांक के नियमों से जुड़े प्रश्न ✔️ परिमेयकरण द्वारा हर का निराकरण ✔️ कठिन प्रश्नों को आसान तरीके से हल करना Class 9 Number System Extra Questions, Class 9 Maths Laws of Exponents, Class 9 Rationalisation Questions, Class 9 Number System Solutions, Class 9 Maths Chapter 1, Number System Questions with Solutions, Class 9 Maths Extra Questions, कक्षा 9 संख्या पद्धति प्रश्न, कक्षा 9 गणित घातांक नियम, कक्षा 9 गणित परिमेयकरण, Class 9 NTSE Maths, Class 9 Olympiad Maths, Infinix Classes Maths by Faiz Sir #class9maths #numbersystem #mathsbyfaizsir #infinixclasses #Class9ExtraQuestions #cbseclass9 #class9numbersystem #lawsofexponents #rationalisation #RecurringDecimals #mathssolutions #कक्षा9गणित #संख्यापद्धति #परिमेयकरण #घातांककेनियम #FaizSirMaths 👨🏫 In class 9, the number system topic introduces students to different types of numbers and their properties. Key concepts include natural numbers, whole numbers, integers, rational numbers, and irrational numbers, along with their representations on the number line and in decimal form (terminating and non-terminating). The chapter also covers operations on real numbers and their properties. 👨🏫 Key topics covered in the number system for class 9: 📚 Natural Numbers (N): These are the counting numbers starting from 1 (1, 2, 3, ...). 📚 Whole Numbers (W): Whole numbers include natural numbers and zero (0, 1, 2, 3, ...). 📚 Integers (Z): Integers encompass both positive and negative whole numbers, including zero (-3, -2, -1, 0, 1, 2, 3, ...). 📚 Rational Numbers (Q): These can be expressed as a fraction p/q, where p and q are integers and q is not zero (e.g., 1/2, -3/4, 5, -7, 0). 📚Real Numbers (R): This set includes all rational and irrational numbers, which can be plotted on a number line. 📚 Irrational Numbers: Numbers that cannot be expressed as a simple fraction (e.g., √2, π). 📚 Decimal Representation: Understanding terminating (e.g., 1.5) and non-terminating decimals (e.g., 0.333...), including recurring (repeating) and non-recurring decimals. 📚 Operations on Real Numbers: Addition, subtraction, multiplication, and division of real numbers, including those involving square roots. 📚 Properties of Real Numbers: Closure, commutative, associative, distributive properties, etc. 📚 Euclid's Division Lemma: A fundamental concept used in finding the Highest Common Factor (HCF) of two numbers. 📚 Fundamental Theorem of Arithmetic: Every composite number can be uniquely expressed as a product of primes.