IOQM 2022 (Q1 to Q10) A triangle ABC with AC= 20 is inscribed in a circle. A tangent t to circle is drawn through B. The distance of t from A is 25 and that from C is 16. If S denotes the area of the triangle ABC, find the largest integer not exceeding S/20. ๐ผ๐ ๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐ ๐ด๐ต๐ถ๐ท, ๐กโ๐ ๐๐๐๐๐ก ๐ ๐๐ ๐ ๐ ๐๐๐๐๐๐ก ๐ด๐ต ๐๐ ๐ก๐๐๐๐ ๐ ๐ข๐โ ๐กโ๐๐ก ๐ด๐/๐ด๐ต ๐๐ 61/2022 ๐๐๐ ๐ ๐๐๐๐๐ก ๐ ๐๐ ๐กโ๐ ๐ ๐๐๐๐๐๐ก ๐ด๐ท ๐๐ ๐ก๐๐๐๐ ๐ ๐ข๐โ ๐กโ๐๐ก ๐ด๐/๐ด๐ท ๐๐ 61/2065. ๐ผ๐ ๐๐ ๐๐๐ก๐๐๐ ๐๐๐ก๐ ๐ด๐ถ ๐๐ก ๐, ๐๐๐๐ ๐ด๐ถ/๐ด๐ ๐ก๐ ๐กโ๐ ๐๐๐๐๐๐ ๐ก ๐๐๐ก๐๐๐๐. In a trapezoid ABCD, the internal bisector of angle A intersects the base BC (or its extension) at the point E. Inscribed in the triangle ABE is a circle touching the side AB at M and side BE at the point P. Find the angle DAE in degrees, if AB:MP = 2. Starting with a positive integer M written on the board, Alice plays the following game: in each move, if x is the number on the board, she replaces it with 3x + 2. Similarly, starting with a positive integer N written on the board, Bob plays the following game: in each move, if x is the number on the board, he replaces it with 2x + 27. Given that Alice and Bob reach the same number after playing 4 moves each, find the smallest value of M + N. ๐ฟ๐๐ก ๐ ๐๐ ๐กโ๐ ๐ ๐๐๐๐๐๐ ๐ก ๐๐๐ ๐๐ก๐๐ฃ๐ ๐๐๐ก๐๐๐๐ ๐ ๐ข๐โ ๐กโ๐๐ก ๐^2 + (๐ + 1)^2 + โฆ + (๐ + 10)^2 ๐๐ ๐กโ๐ ๐ ๐๐ข๐๐๐ ๐๐ ๐ ๐๐๐ ๐๐ก๐๐ฃ๐ ๐๐๐ก๐๐๐๐ ๐. ๐น๐๐๐ ๐ + ๐. ๐ณ๐๐ ๐, ๐ ๐๐ ๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐ ๐^๐โ ๐^๐ โ ๐๐=๐๐. ๐ญ๐๐๐ ๐๐๐ ๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐ ๐๐๐๐๐ ๐๐ ๐^๐ + ๐^๐. ๐ญ๐๐๐ ๐๐๐ ๐๐๐๐๐๐ ๐๐ ๐๐๐ ๐๐๐๐ ๐๐๐๐๐ (๐, ๐)๐๐๐๐ ๐๐๐๐ ๐, ๐ โ (๐๐, ๐๐, โฆ, ๐๐, ๐๐) ๐๐๐ ๐ฎ๐ช๐ซ (๐, ๐) + ๐ณ๐ช๐ด (๐, ๐) = ๐ + ๐. ๐๐ข๐๐๐๐ ๐ ๐กโ๐ ๐๐๐๐๐ ๐๐ข๐๐๐๐๐ ๐ ๐๐๐ ๐ ๐ ๐๐ก๐๐ ๐๐ฆ ๐^2 + 3๐=197๐^2+๐. ๐๐๐๐ก๐ ๐/๐ ๐๐ ๐ ๐/๐, ๐คโ๐๐๐ ๐, ๐, ๐ ๐๐๐ ๐๐๐ ๐๐ก๐๐ฃ๐ ๐๐๐ก๐๐๐๐๐ , ๐ less than ๐ ๐๐๐ ๐บ๐ถ๐ท(๐, ๐) = 1. ๐น๐๐๐ ๐กโ๐ ๐๐๐ฅ๐๐๐ข๐ ๐ฃ๐๐๐ข๐ ๐๐ ๐ + ๐ + ๐. Consider the 10-digit number M = 9876543210. We obtain a new 10-digit number from M according to the following rule: we can choose one or more disjoint pairs of adjacent digits in M and interchange the digits in these chosen pairs, keeping the remaining digits in their own places. For example, from M = 9876543210, by interchanging the 2 underlined pairs, and keeping the others in their places, we get M1 9786453210 . Note that any number of (disjoint) pairs can be interchanged. Find the number of new numbers that can be so obtained from M.