Obtain The Maclaurin's Expansion Of The Function log(1+x) | PT log√[(1+x)/(1-x)]=x+(x^3)/3+(x^5)/5+.

Obtain The Maclaurin's Expansion Of The Function log(1+x) | PT log√[(1+x)/(1-x)]=x+(x^3)/3+(x^5)/5+.

Obtain The Maclaurin's Expansion Of The Function log(1+x) | PT log√[(1+x)/(1-x)]=x+(x^3)/3+(x^5)/5+. #engineering_mathematics, #name_of_the_book_author_dr_k_s_c, #content, #taylors_and_maclaurins_series_expansion_for_a_function_of_one_variable, #obtain_the_taylors_expansion_of_loge_x_about_x=1_upto_the_term_containing_fourth_degree, #hence_obtain_loge_1.1, #expand_arctanx_in_powers_of_x_minus1_upto_the_term_containing_fourth_degree, #obtain_taylors_series_expansion_of_log(cosx)_about_the_point_x=π/3_upto_the_fourth_degree_term, #expand_sinx_in_power_of_(x-π/2)_upto_fourth_degree_terms, #obtain_the_maclaurins_expansion_of_sin-1x_upto_the_term_containing_x^5, #expand_e^sinx_as_maclaurins_series_upto_the_terms_containing_x^4, #expand_log(1+sinx)_in_powers_of_x_upto_the_term_x^4, #expand_log(secx)_upto_the_term_containing_x^6_using_maclaurins_series, #expand_log(secx)_in_ascending_powers_of_x_upto_the_first_three_non_vanishing_terms, #obtain_the_power_series_expansion_of_f(x)=cosx_about_x=π/3, #obtain_the_maclaurins_expansion_of_the_function_log(1+x)_and_hence_deduce_that_log√[(1+x)/(1-x)]=x+(x^3)/3+(x^5)/5+..,