Prove Sec4A(1 - sin4A) - 2tan2A = 1 || sec^4A(1-sin^4A)-2tan^2A = 1 || sec4 θ(1 - sin4 θ) - 2tan2 θ

Prove Sec4A(1 - sin4A) - 2tan2A = 1 || sec^4A(1-sin^4A)-2tan^2A = 1 || sec4 θ(1 - sin4 θ) - 2tan2 θ

Prove the following identities: sec4 A (1 - sin4 A) - 2 tan2 A = 1 - Mathematics sec4a(1-sin4a)-2tan2a =1 (1-2sin2a)2/ cos4a-sin4a=2cos2a-1 tan sec 1 = tan sec tan sec 1 1 tan theta / sec theta - 1 = tan theta + sec theta + 1/ tan the... 1/sina+cosa+1+1/ sina+cosa-1=seca+coseca 1 + tan a + sec a * 1 + cot a cosec a = 2 cot2a(seca-1/1+sina) +sec2a(sina-1/1+seca)=O Q 1 - sin a 1 - sin a sec a - tan a 1 + cot a -- cosec a(1 + tan a + sec a)