Engg_Maths | If z=f(x, y) and x=r cos θ and y=r sin θ ST (∂z/∂x)²+(∂z/∂y)²=(∂z/∂r)²+(1/r²)(∂z/∂θ)²

Engg_Maths | If z=f(x, y) and x=r cos θ and y=r sin θ ST (∂z/∂x)²+(∂z/∂y)²=(∂z/∂r)²+(1/r²)(∂z/∂θ)²

Engg_Maths | If z=f(x, y) and x=r cos θ and y=r sin θ ST (∂z/∂x)²+(∂z/∂y)²=(∂z/∂r)²+(1/r²)(∂z/∂θ)² #engineering_mathematics, #module_2_differential_calculus_2, #2_1_taylor's_and_maclaurin's_series_expansion_for_a_function_of_one_vamiable, #2_2_indeterminate_forms, #2_3_partial_differentiation, #2_31_partial_derivatives, #note_for_problems_type1_direct_partial_derivatives, #note_symmetric_function, #type2_indirect_partial_derivatives, #total_derivative_differentiation_of_composite_functions, #if_z=f(x_y)_and_x=rcosθ_and_y=rsinθ_show_that_(∂z/∂x)²+(∂z/∂y)²=(∂z/∂r)²+(1/r²)(∂z/∂θ)²,