Class 12 Maths Integrals Chapter 7 Part 2 ๐Ÿ”ฅ Important Trigonometric Integrals | NCERT | Faiz Sir

Class 12 Maths Integrals Chapter 7 Part 2 ๐Ÿ”ฅ Important Trigonometric Integrals | NCERT | Faiz Sir

Is video me Class 12 Maths โ€“ Chapter 7 (Integrals) Part 2 ko detail me explain kiya gaya hai. Yeh lecture NCERT based hai aur board exams + competitive exams ke liye bahut important hai. ๐Ÿ“Œ Is lecture me aap seekhenge: โœ” Some Important Integrals involving Trigonometric Functions โœ” โˆซtan x dx, โˆซcot x dx, โˆซsec x dx, โˆซcosec x dx ke short tricks & proofs โœ” Mixed type NCERT Examples step-by-step โœ” Exercise based important integrals (1โ€“9) โœ” Objective MCQs (Choose the correct answer) jo exams me direct aate hain ๐Ÿ“˜ Covered Topics: ๐Ÿ”น Trigonometric Integrals ๐Ÿ”น Substitution method ๐Ÿ”น Standard integrals ๐Ÿ”น NCERT Exercise questions ๐Ÿ”น Board exam oriented practice ๐Ÿ‘จโ€๐Ÿซ By: Faiz Sir (M.Sc. Maths with CS) ๐Ÿ“š Class: 12 ๐Ÿ“– Chapter: 7 โ€“ Integrals ๐Ÿซ Board: CBSE | NCERT ๐Ÿ‘‰ Agar aap Class 12 Maths Integrals ko easily samajhna chahte hain, to yeh video must watch hai. ๐Ÿ‘ Video ko Like, Share & Subscribe zaroor karein โ€“ Infinix Classes Maths by Faiz Sir #class12maths #integrals #Chapter7Integrals #trigonometricintegrals #ncertmaths #cbseclass12 #boardexam2026 #mathsbyfaizsir #infinixclasses #integralcalculus #Class12BoardMaths #ImportantIntegrals #mathstricks #ncertsolutions class 12 maths integrals, chapter 7 integrals class 12, integrals ncert class 12, trigonometric integrals, important integrals class 12, integrals by faiz sir, infinix classes maths, cbse class 12 maths, board exam maths class 12, integration tricks, calculus class 12, definite and indefinite integrals, ncert integrals solutions, maths class 12 chapter 7, integrals examples, trigonometric integration, maths in hindi, class 12 maths hindi medium, integrals part 2 INTEGRALS | Class - 12 | Chapter โ€“ 7 | NCERT By : FAIZ SIR Some Important Integrals Involving Trigonometric Functions: (i) โˆซtan x dx = log |sec x| + C (ii) โˆซcot x dx = log |sin x| + C (iii) โˆซsec x dx = log |sec x + tan x| + C (iv) โˆซcosec x dx = log |cosec x โ€“ cot x| + C Example : Find the following integrals: (i) โˆซsin3x cos2x dx (ii) โˆซ๐ฌ๐ข๐งโก๐’™/๐ฌ๐ข๐งโกใ€–(๐’™ + ๐’‚)ใ€— dx (iii) โˆซ๐Ÿ/(๐Ÿ + ๐ญ๐š๐งโก๐’™ ) dx Integrate the functions in Exercises 1 to 9: 1. ๐Ÿ๐’™/(๐Ÿ+ ๐’™^๐Ÿ ) 2. ๐Ÿ/(๐’™ + ๐’™ ๐’๐’๐’ˆ ๐’™) 3. sin (ax + b) cos (ax + b) 4. (๐’™^๐Ÿ‘ โˆ’๐Ÿ)^(๐Ÿ/๐Ÿ‘) ๐’™^๐Ÿ“ 5. ๐Ÿ/(๐’™ ใ€–(๐’๐’๐’ˆ ๐’™)ใ€—^๐’Ž ), ๐’™ is greater than ๐ŸŽ, ๐’Žโ‰ ๐Ÿ 6. ๐’†^ใ€–๐’•๐’‚๐’ใ€—^(โˆ’๐Ÿ)โก๐’™ /(๐Ÿ+ ๐’™^๐Ÿ ) 7. (๐Ÿ ๐’„๐’๐’” ๐’™ โˆ’ ๐Ÿ‘ ๐’”๐’Š๐’ ๐’™)/(๐Ÿ” ๐’„๐’๐’” ๐’™ + ๐Ÿ’ ๐’”๐’Š๐’ ๐’™) 8. cot x log sin x 9. (๐’™^๐Ÿ‘ ๐’”๐’Š๐’ ใ€–(๐’•๐’‚๐’ใ€—^(โˆ’๐Ÿ) ๐’™^๐Ÿ’))/(๐Ÿ+ ๐’™^๐Ÿ– ) Choose the correct answer in Exercises 1 and 2. 1. โˆซ (๐Ÿ๐ŸŽ ๐’™^๐Ÿ—+ ใ€–๐Ÿ๐ŸŽใ€—^๐’™ ใ€–๐’๐’๐’ˆใ€—_๐’† ๐Ÿ๐ŸŽ)/(๐’™^๐Ÿ๐ŸŽ+ ใ€–๐Ÿ๐ŸŽใ€—^๐’™ ) dx equals (A) 10x โ€“ x10 + C (B) 10x + x10 + C (C) (10x โ€“ x10)-1 + C (D) log(10x + x10) + C 2. โˆซ ๐’…๐’™/(ใ€–๐’”๐’Š๐’ใ€—^๐Ÿ ๐’™ใ€– ๐’„๐’๐’”ใ€—^๐Ÿ ๐’™) equals (A) tan x + cot x + C (B) tan x - cot x + C (C) tan x cot x + C (D) tan x - cot 2x + C