In this video, we talk about the cross-entropy loss function, a measure of difference between predicted and actual probability distributions that's widely used for training classification models due to its ability to effectively penalize prediction errors. References ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ Why We Don't Use the Mean Squared Error (MSE) Loss in Classification: • Why We Don't Use the Mean Squared Error (M... Related Videos ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ Dropout - Explained: • Dropout in Neural Networks - Explained Overfitting vs Underfitting: • Overfitting vs Underfitting - Explained Why Models Overfit and Underfit - The Bias Variance Trade-off: • Bias-Variance Trade-off - Explained Least Squares vs Maximum Likelihood: • Least Squares vs Maximum Likelihood Hyperparameters Tuning: Grid Search vs Random Search: • Hyperparameters Tuning: Grid Search vs Ran... XGBoost Explained in Under 3 Minutes: • XGBoost Explained in Under 3 Minutes Contents ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ 00:00 - Intro 01:07 - Cross-Entropy Intuition 01:52 - Cross-Entropy in Information Theory 02:33 - Relationship with Softmax 03:43 - Outro Follow Me ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ 🐦 Twitter: @datamlistic / datamlistic 📸 Instagram: @datamlistic / datamlistic 📱 TikTok: @datamlistic / datamlistic 👔 Linkedin: / datamlistic Channel Support ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ The best way to support the channel is to share the content. ;) If you'd like to also support the channel financially, donating the price of a coffee is always warmly welcomed! (completely optional and voluntary) ► Patreon: / datamlistic ► Bitcoin (BTC): 3C6Pkzyb5CjAUYrJxmpCaaNPVRgRVxxyTq ► Ethereum (ETH): 0x9Ac4eB94386C3e02b96599C05B7a8C71773c9281 ► Cardano (ADA): addr1v95rfxlslfzkvd8sr3exkh7st4qmgj4ywf5zcaxgqgdyunsj5juw5 ► Tether (USDT): 0xeC261d9b2EE4B6997a6a424067af165BAA4afE1a #crossentropy #machinelearning #datascience #neuralnetworks