Cross-Entropy - Explained

Cross-Entropy - Explained

In this video, we talk about the cross-entropy loss function, a measure of difference between predicted and actual probability distributions that's widely used for training classification models due to its ability to effectively penalize prediction errors. References ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ Why We Don't Use the Mean Squared Error (MSE) Loss in Classification:    • Why We Don't Use the Mean Squared Error (M...   Related Videos ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ Dropout - Explained:    • Dropout in Neural Networks - Explained   Overfitting vs Underfitting:    • Overfitting vs Underfitting - Explained   Why Models Overfit and Underfit - The Bias Variance Trade-off:    • Bias-Variance Trade-off - Explained   Least Squares vs Maximum Likelihood:    • Least Squares vs Maximum Likelihood   Hyperparameters Tuning: Grid Search vs Random Search:    • Hyperparameters Tuning: Grid Search vs Ran...   XGBoost Explained in Under 3 Minutes:    • XGBoost Explained in Under 3 Minutes   Contents ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ 00:00 - Intro 01:07 - Cross-Entropy Intuition 01:52 - Cross-Entropy in Information Theory 02:33 - Relationship with Softmax 03:43 - Outro Follow Me ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ 🐦 Twitter: @datamlistic   / datamlistic   📸 Instagram: @datamlistic   / datamlistic   📱 TikTok: @datamlistic   / datamlistic   👔 Linkedin:   / datamlistic   Channel Support ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ The best way to support the channel is to share the content. ;) If you'd like to also support the channel financially, donating the price of a coffee is always warmly welcomed! (completely optional and voluntary) ► Patreon:   / datamlistic   ► Bitcoin (BTC): 3C6Pkzyb5CjAUYrJxmpCaaNPVRgRVxxyTq ► Ethereum (ETH): 0x9Ac4eB94386C3e02b96599C05B7a8C71773c9281 ► Cardano (ADA): addr1v95rfxlslfzkvd8sr3exkh7st4qmgj4ywf5zcaxgqgdyunsj5juw5 ► Tether (USDT): 0xeC261d9b2EE4B6997a6a424067af165BAA4afE1a #crossentropy #machinelearning #datascience #neuralnetworks