Random Forest is an ensemble learning method that combines multiple decision trees to improve accuracy and prevent overfitting. It works by constructing multiple decision trees during training and outputs the mode of the classes (for classification) or the mean prediction (for regression) of the individual trees. -------------------------------------------------------------------------------------------------------------------------------------- Timestamps: 00:00 – Introduction 00:23 – Random forest 04:05 – Step 1 07:03 – Step 2 07:25 – Step 3 -------------------------------------------------------------------------------------------------------------------------------------- 👉Subscribe to our new channel: / @varunainashots ► Machine Learning Complete playlist: • Machine Learning Other subject playlist Link: -------------------------------------------------------------------------------------------------------------------------------------- ►Theory of Computation • TOC(Theory of Computation) ►Operating System: • Operating System (Complete Playlist) ►Database Management System: • DBMS (Database Management system) Complete... ►Computer Networks: • Computer Networks (Complete Playlist) ►Artificial Intelligence: • Artificial Intelligence (Complete Playlist) ►Computer Architecture: • Computer Organization and Architecture (Co... ►Design and Analysis of algorithms (DAA): • Design and Analysis of algorithms (DAA) ►Structured Query Language (SQL): • Structured Query Language (SQL) --------------------------------------------------------------------------------------------------------------------------------------- Our Social Media: ► Subscribe us on YouTube- / gatesmashers ► Like Our page on Facebook - / gatesmashers ► Follow us on Instagram- / gate.smashers -------------------------------------------------------------------------------------------------------------------------------------- ►A small donation would help us continue making GREAT Lectures for you. ►Be a Member & Give your Support on bellow link : / @gatesmashers ►UPI: gatesmashers@apl ►Paypal Account: paypal.me/GSmashers ►For any other Contribution like notes pdfs, feedback, suggestion etc [email protected] ►For Bussiness Query [email protected]