đ VTU 1BMATS101 (2025 Scheme) | Linear Transformations | Module 5 đ VTU BMATS201 (Module 3) & BMATE201 (Module 2) | Vector Space & Linear Transformations | 2022 Scheme ââââââââââââââââââââââ đ Question Covered Find the range, null space, rank, and nullity of the transformation T : V3(R) â V2(R) defined by T(x, y, z) = (y â x, y â z). Also verify the RankâNullity Theorem for the given transformation. This problem is solved step by step by: ⢠Finding the null space of T ⢠Determining the range of T ⢠Computing rank and nullity ⢠Verifying that rank(T) + nullity(T) = dimension of V3(R) The explanation is systematic, concept-based, and strictly exam-oriented, making it suitable for VTU Model Question Papers and Semester Examinations. ââââââââââââââââââââââ đ NEW â VTU 1BMATS101 (2025 Scheme) (Most Important) đ Module 1 â Calculus đ    â˘Â Calculus | VTU 1BMATS101 â Module 1 (Semes...  đ Module 3 â Linear Algebra đ    â˘Â Linear Algebra Made Simple â Complete  ââââââââââââââââââââââ đ All 1BMATS101 Playlists đ Model QPâI (2025)    â˘Â 1BMATS101 | VTU Calculus & Linear Algebra ...  đ Module 1    â˘Â Partial Differentiation | Multivariable Ca...  đ Module 2    â˘Â Vector Calculus | VTU 1BMATS101 â Module 2...  đ Module 3    â˘Â Linear Algebra: System of Equations & Eige...  đ Module 4    â˘Â Vector Space | VTU 1BMATS101 â Module 4 (S...  đ Module 5    â˘Â Linear Transformation | VTU 1BMATS101 â Mo...  ââââââââââââââââââââââ đ Reference: Module-wise VTU Question Solutions đ Module 1 | Calculus Q1(a) Partial Differentiation â    â˘Â Partial differentiation engineering mathem...  Q1(b) Jacobian â    â˘Â Jacobian engineering mathematics  Q1(c) Maxima & Minima â    â˘Â Maxima and minima engineering mathematics   Q2(a) Chain Rule â    â˘Â Chain rule of partial differentiation  Q2(b) Jacobian â    â˘Â Jacobian  Q2(c) Maclaurin Series â    â˘Â maclaurin series of two variables  đ Module 2 | Vector Calculus Q3(a) Gradient â    â˘Â Vector calculus | Gradient of Dot Product  Q3(b) Irrotational Field â    â˘Â Vector calculus engineering mathematics | ...  Q3(c) Spherical Coordinates â    â˘Â cartesian to spherical coordinates | vecto...  Q4(a) Directional Derivative â    â˘Â Vector calculus engineering mathematics | ...  Q4(b) Divergence & Curl â    â˘Â Vector calculus engineering mathematics | ...  Q4(c) Cylindrical Coordinates â    â˘Â Cartesian to cylindrical coordinates | Vec...  đ Module 3 | Linear Systems & Eigenvalues Q5(a) Rank â    â˘Â Rank of matrix | Linear algebra   Q5(b) Diagonalization â    â˘Â Diagonalization of Matrices | Linear Algebra  Q5(c) Traffic Flow â    â˘Â Traffic flow linear algebra  Q6(a) Consistency â    â˘Â Test for consistency and solve the equatio...  Q6(b) GaussâJordan â    â˘Â Gauss Jordan Method  Q6(c) Eigenvalues â    â˘Â Eigen values & eigen vectors   đ Module 4 | Vector Space Q7(a) Linear Combination â    â˘Â Linear combination of the vector | Vector ...  Q7(b) Subspace â    â˘Â Subspace of r3 | Vector space  Q7(c) Basis of Spaces â    â˘Â Basis dimension row space column space nul...  Q8(a) Basis & Dimension â    â˘Â Basis and dimension of a vector space | Ve...  Q8(b) Inner Product â    â˘Â Inner product in vector space | Vector space  Q8(c) Coordinates w.r.t. Basis â    â˘Â Vector Space | Coordinates of a vector wit...  ââââââââââââââââââââââ đ Follow VTU Maths with Muheeb (Mathematics Tutor) on WhatsApp https://whatsapp.com/channel/0029Vb6c... đ Get all VTU Maths updates and video links on Telegram https://t.me/vtumathswithmathematicst... ââââââââââââââââââââââ đ Support Us Join our channel for exclusive perks đ đ    / @officialmathematicstutor  ââââââââââââââââââââââ #LinearTransformation #VectorSpace #1BMATS101 #VTUMaths #LinearAlgebra #EngineeringMathematics #VTUExamPreparation .